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Abstract

Large Language Models (LLMs) and code agents in soft-
ware development are rapidly evolving from generating iso-
lated code snippets to producing full-fledged software appli-
cations with graphical interfaces, interactive logic, and dy-
namic behaviors. However, current benchmarks fall short in
evaluating such production-ready software, as they often rely
on static checks or binary pass/fail scripts, failing to capture
the interactive behaviors and runtime dynamics that define
real-world usability—qualities that only emerge when an ap-
plication is actively used. This is the blind spot of current
evaluation: you don’t know if an app works until you click
through it, interact with it, and observe how it responds.
To bridge this gap, we introduce RealDevWorld, a novel
evaluation framework for automated end-to-end assessment
of LLMs’ ability to generate production-ready repositories
from scratch. It features two key components: (1) RealDe-
vBench, a diverse collection of 194 open-ended software en-
gineering tasks across multiple domains, incorporating mul-
timodal elements to reflect real-world complexity; and (2)
AppEvalPilot, a new agent-as-a-judge evaluation system that
simulates realistic, GUI-based user interactions to automati-
cally and holistically assess software functional correctness,
visual fidelity, and runtime behavior. The framework deliv-
ers fine-grained, task-specific diagnostic feedback, support-
ing nuanced evaluation beyond simple success/failure judg-
ments. Empirical results show that RealDevWorld delivers ef-
fective, automatic, and human-aligned evaluations, achieving
an accuracy of 0.92 and a correlation of 0.85 with expert hu-
man assessments, while significantly reducing the relianc on
manual review. This enables scalable, human-aligned assess-
ment of production-level software generated by LLMs.

1 Introduction

Remarkable advancements in LLMs for code and au-
tonomous coding agents are driving a paradigm shift in soft-
ware development. Their generative capabilities are evolv-
ing from function-level code snippets, to crafting self-
contained demos, and now towards the creation of sophisti-
cated, production-ready repositories featuring intuitive user
interfaces, modular architectures, and robust runtime in-
tegration. However, this evolution poses significant chal-
lenges for evaluation. Current repository-level code genera-
tion tasks lack rigorous assessments of functional complete-
ness, especially with respect to dynamic and interactive user-
centric behaviors. For example, consider a game application
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Figure 1: Software Engineering Evaluation: From Auto-
mated to Autonomous Evaluation

generated by such a system. Its correctness and quality can-
not be reliably determined by code inspection or static anal-
ysis alone. Instead, it requires user-centric validation: click-
ing through the interface, interacting with game elements,
observing state transitions, and receiving feedback in real
time—actions that reflect how an actual user would engage
with the system. These user-centric and runtime-dependent
behaviors are difficult to capture through conventional met-
rics and often demand the execution of complex end-to-end
(E2E) test cases on the generated front-end to assess correct-
ness, interaction quality, and behavioral robustness. How-
ever, automating such evaluations remains challenging: gen-
erated repositories frequently vary in visual layout, interac-
tion flow, and execution paths, making static or script-based
evaluations brittle and often infeasible.

Current benchmarks fall short in automatically assess-
ing the functional completeness and real-world applicability
of production-ready repositories, as illustrated in Figure 1.
Function-level benchmarks (Zhuo et al. 2024; Jain et al.
2025; Zhang et al. 2024) primarily focus on isolated gener-
ation tasks, such as function or class implementation, which
fail to capture the complexity and dynamic interactions
of real-world repository-level applications. Repository-level



benchmarks (Ding et al. 2023; Li et al. 2025; Liu, Xu, and
McAuley 2024; Zhang et al. 2023; Hu et al. 2025; Jimenez
et al. 2024; Miserendino et al. 2025) attempt to assess entire
codebases, yet commonly rely on static or predefined evalu-
ation methods, such as code similarity metrics, unit tests, or
scripted integration tests, that are inherently brittle and lim-
ited. These methods struggle to reflect real-time interactions,
user-driven workflows, runtime errors, or the diverse visual
and structural variability of generated outputs. Real-world
applications, especially those involving user interfaces, doc-
umentation, and multimodal content, exhibit dynamic, un-
predictable behaviors. Evaluating them accurately demands
intelligent, adaptive methods capable of systematically cap-
turing runtime interaction fidelity and user-centric correct-
ness, highlighting the urgent need for more comprehensive
evaluation frameworks.

Recent advances in interactive agent technology offer
promising directions toward this goal. Emerging paradigms,
such as Agent-as-a-Judge (Zhuge et al. 2024), employ au-
tonomous agents that execute end-to-end tests by emulat-
ing human behaviors, monitoring runtime states, and cap-
turing detailed execution traces. Such agents transcend tra-
ditional static metrics, treating evaluated applications not
merely as passive test subjects, but as dynamic, interac-
tive environments that inform agent reasoning and decision-
making. Building upon this paradigm, we present ReaD-
evWorld, a comprehensive evaluation framework explic-
itly designed to assess Al-generated, production-ready code-
bases through dynamic interaction and open-ended testing
scenarios. As part of this framework, we introduce RealDe-
vBench, a benchmark of 194 carefully curated open-ended
software engineering tasks across display, analysis, data,
and game domains. These tasks are sampled from the real-
world programming community requirements and system-
atically expanded at the function level using LLMs, with
a subset incorporating multimodal complexity (structured
data, images, audio) to reflect real-world challenges. Table 1
highlights how RealDevBench differs from existing evalua-
tion datasets. To operationalize this benchmark, we develop
AppEvalPilot, a novel agent-based evaluation framework
that emulates human interactive software engineering prac-
tices. Given a task description and generated code, AppE-
valPilot integrates web and OS-level operations to simulate
testing workflows, conducting both functional and boundary
evaluations for comprehensive software development veri-
fication. This agent serves as an automated and effective
testbed for production-ready software engineering.

Our main contributions are:

¢ A GUI-Interactive Agent-as-a-Judge Paradigm for
Automated Evaluation. We present AppEvalPilot,
a novel agent-as-a-judge evaluation paradigm for
production-ready code generation in complex, dynamic
interaction scenarios. By simulating realistic user be-
havior and performing runtime GUI interactions, AppE-
valPilot enables fine-grained diagnostics comparable to
white-box testing in traditional software engineering.

* An Open-ended and Scalable Benchmark Suite. Re-
alDevBench features a diverse set of tasks derived from

real-world programming needs, spanning domains like
display, analysis, data, and gaming. It benchmarks the
ability of code intelligence models to build repository-
level software from scratch, with tasks incorporating
multimodal inputs—such as images, audio, text, and
structured data—to increase reasoning difficulty and sce-
nario realism.

* Human Alignment and Cost-Effective Validation. Our
framework achieves strong alignment with expert human
assessments, reaching an accuracy of 0.92 and a corre-
lation of 0.85, substantially outperforming existing auto-
mated evaluators. By narrowing the gap between model-
based and human evaluation, it enables more reliable and
cost-effective validation of generated code.

2 Related Work
2.1 Benchmarks for Software Engineering

Evaluating repository-level code generation in LLM-based
agents remains challenging due to the complexity of
end-to-end software development, including system inte-
gration, dependency management, and dynamic interac-
tions (Zhuge et al. 2024). Existing benchmarks such as Big-
CodeBench (Zhuo et al. 2024), LiveCodeBench (Jain et al.
2025), and NaturalCodeBench (Zhang et al. 2024) focus on
function- or class-level code completion and rely primarily
on static test cases, failing to capture dynamic behaviors like
web interfaces or gameplay (Hou et al. 2024; Jin et al. 2024).
As a result, they fall short in assessing real-world develop-
ment challenges such as integration, ambiguous specifica-
tions, and evolving requirements. Repository-level bench-
marks (Ding et al. 2023; Li et al. 2025; Liu, Xu, and
McAuley 2024; Zhang et al. 2023; Hu et al. 2025; Jimenez
et al. 2024; Miserendino et al. 2025) tackle broader software
tasks with interdependent components, but mainly use static
metrics like similarity scores or unit tests (Fan et al. 2023;
Laskar et al. 2024), which may not fully reflect functional
correctness. Advanced benchmarks like rfSDE-Bench (Hu
et al. 2025), SWE-Bench (Jimenez et al. 2024), and SWE-
Lancer (Miserendino et al. 2025) depend on pre-defined test
cases, limiting their ability to evaluate adaptability to re-
quirement changes or the creation of new modules. DE-
VAI (Zhuge et al. 2024) and MLE-Bench (Chan et al. 2024)
introduce automated development tasks for agent evalua-
tion but rely on public datasets, which may be seen during
model training. In contrast, our proposed benchmark sup-
ports adaptive module development and dynamic interaction
testing, simulating human-like evaluation processes to more
comprehensively assess software development capabilities.

2.2 Advanced Judgement Approaches

Recent evaluation techniques have established new
paradigms, starting with LLM-as-a-Judge (Zheng et al.
2023b), which employs language models to evaluate text-
based tasks instead of traditional metrics. While effective for
textual outputs, this approach is limited to assessing static fi-
nal result rather than development processes or intermediate
outputs. Agent-as-a-Judge (Zhuge et al. 2024) builds on this
by introducing a dynamic agent-based approach, leveraging
multi-dimensional scoring and iterative feedback loops.



Benchmark Lang. Level Tasks Eval Method Agent Judge Input Data Interactive
BigCodeBench (Zhuo et al. 2024) PY Func. Comp.  Unit test

LiveCodeBench (Jain et al. 2025) PY Func. Gen. Unit test

RepoBench (Liu, Xu, and McAuley 2024) PY, Java Repo. Ret.  Similarity

SWE-Bench (Jimenez et al. 2024) PY Repo. Maint.  Unit test

EvoCodeBench (Li et al. 2025) PY Repo. Ret. Pass@k

SWE-Lancer (Miserendino et al. 2025) JS, TS Repo. Deyv. Unit test

FrontendBench (Zhu et al. 2025) JS Repo. Gen. Unit test

COMMITO (Zhao et al. 2024) PY Repo.
JS, TS Repo.

Web-Bench (Xu et al. 2025)

Dev. Unit test
Dev. Unit test

RealDevWorld

PY, JS, TS Repo. Dev. Unit test v

Multi-modal v

Table 1: Comparison of RealDevWorld with existing benchmarks. It leverages AppEvalPilot for scalable, multi-modal, and
interactive software evaluation. Note: TS = TypeScript; JS = JavaScript; Func. = Function level; Repo. = Repository level;
Comp. = Completion; Gen. = Generation, Ret. = Retrieval; Maint. = Maintenance; Dev. = Development.

However, it remains insufficient for evaluating software with
complex interactive components, particularly those with
GUIs. These require evaluating both interaction flows and
the functionality of UI elements, which are more dynamic
and nuanced. To address these challenges, we propose an
innovative approach that integrates GUI agent capabilities
for interactive testing, inspired by recent advances in GUI
agents (Xu et al. 2024; Cheng et al. 2024), to mirror human
testing processes for a more dynamic and comprehensive
evaluation. We summarized the comparisons in Table 1.

3 Preliminary

This section formalizes the task of end-to-end soft-
ware evaluation and analyzes three mainstream evaluation
paradigms—human evaluation, LLM-as-a-Judge (Zheng
et al. 2023a), and Agent-as-a-Judge (Zhuge et al. 2024)-in
terms of their coverage across software quality dimensions,
laying the foundation for subsequent experiments and theo-
retical analysis.

3.1 End-to-End Software Evaluation

As previously discussed in the introduction, end-to-end test-
ing is essential for assessing production-ready software de-
velopment. Formally, a generator A (e.g., a human devel-
oper or an Al system) receives a requirement instance ) =
(D, F, M), where D is the requirement description, F' is the
list of desired features, and M represents any supplemen-
tary materials. Given this input, the generator is expected to
produce a complete software repository R.

The goal of end-to-end evaluation is to design an effec-
tive method to measure the quality of R. Unlike unit testing
that focuses on individual components, end-to-end evalua-
tion validates user workflows across all system layers, ensur-
ing the entire software system functions correctly in realistic
usage scenarios. This challenge is particularly significant for
complex software in real-world, open scenarios, where code
structure and interaction are often unpredictable.

3.2 Formalization and Evolution of Evaluation
Workflows

According to software engineering standards and wvali-
dation research (ISO/IEC/IEEE 29119 (iso 2022), SV-

COMP (Beyer 2024)), production-grade software must un-
dergo comprehensive validation at three levels: unit level
(individual code components), system level (architecture
and integration), and acceptance level (user interactions and
dynamic behaviors). Only by satisfactorily meeting all three
levels can software be deemed production-ready.

We model the end-to-end evaluation process as a uni-
fied pipeline that transforms the general evaluation workflow
into concrete implementations:

Identify Execute Judge
(Q,R) c T

where from task description @) and repository R, test cases C
are identified, These test cases are executed to collect execu-
tion traces T, and Judge analyzes these traces to produce the
final software quality score S. The key differences between
evaluation paradigms lie in how test cases C' are identified
given () and R, how these C' are executed to collect traces
T, and how Judge analyzes these traces to produce S. The
three mainstream evaluation paradigms are as follows.

Human evaluation workflow: Human experts partici-
pate in the entire process, covering unit, system, and accep-
tance levels. In this paradigm, experts manually analyze re-
quirement () and repository R, design test cases C' based
on features F'. The test cases are executed manually to gen-
erate comprehensive Tanuar that covers all validation levels
such as unit testing, system testing, and acceptance testing.
Subsequently, Judge, .., analyzes the manual traces to pro-
duce quality score Spanual, €.2. test coverage and pass rates.
The advantage is comprehensiveness, but the disadvantage
is high cost and low efficiency due to the manual nature of
the entire process.

LLM-as-a-Judge workflow: A typical implementation is
automatic scoring based on static code analysis (e.g., Ar-
tifactsBench). In this approach, Executegy,g. extracts code
fragments via fixed scripts or paths, generating limited test
cases C' only from static code inspection rather than from
the original feature list F'. This produces Traceg. consist-
ing of static text representations, which Judge, | ,, analyzes
through text-based reasoning to generate Q.. This method
only covers the unit and part of the system level, cannot de-
tect runtime or interaction issues, and has limited reliability
due to the static nature of both Executeg,q. and Tracegasc.
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Figure 2: Representative cases from RealDevBench across
four domains - Data, Display, Analysis, and Game - with
consistent triplet structure (requirements, features, materi-
als), reflecting real-world software engineering challenges.

Interactive agent-as-a-judge workflow: The agent can
automatically understand requirements and decompose fea-
tures from F' to generate comprehensive test cases C. Dur-
ing evaluation, Execute,g.n executes these C' through GUI
interactions with R, dynamically collecting execution re-
sults to form Trace,gen that captures real-time behaviors
and user interactions. Judge,,., then analyzes these dy-
namic traces to produce Sagen. This method can automati-
cally cover all three dimensions—unit, system, and accep-
tance levels—combining depth and scalability, making it
ideal for production-grade evaluation.

This framework provides the theoretical foundation for
our RealDevBench benchmark and AppEvalPilot evaluation
system, which we detail in the following sections.

4 RealDevBench: Open-Ended SE Benchmark

The RealDevBench dataset is constructed through a system-
atic pipeline designed to ensure its relevance, complexity,
and evaluative rigor.

4.1 Dataset Overview

To comprehensively evaluate Al systems across these
dimensions, we introduce RealDevBench, a benchmark
specifically designed to assess end-to-end software engi-
neering capabilities in a realistic and practical context. Re-
alDevBench comprises 194 requirements spanning four
practical domains—Analysis, Display, Data, and Game, that
reflect core engineering needs. The distribution of tasks is as
follows: Display (50.0%), Data (14.4%), Analysis (18.6%),
and Game (17.0%). This allocation mirrors the prevalence
of web-centric and data-intensive applications in real-world
software development.

The dataset is defined by three key attributes: (1) Open-
ended repository construction, where systems must build
software from scratch rather than fill in predefined tem-
plates; (2) Multimodal complexity, incorporating diverse in-
puts such as text, images, audio, and tabular data to test in-
tegrative and cross-modal capabilities;(3) Functional diver-
sity, encompassing a wide spectrum of software functionali-
ties across varying levels of complexity.

4.2 Dataset Construction

Domain and Requirement. We examined WebDev
Arena (Vichare et al. 2025) to establish 4 domain cate-
gories: Display, Analysis Data, and Game. We sampled
requirements from SRDD (OpenBMB 2024) and expanded
through web crawling freelancer platforms (Upwork! and
Freelancer?) to capture real client demands.

Feature Construction. To construct detailed feature lists
that extend requirements from development and functional
perspectives, we learned from open-source projects and per-
formed systematic feature extraction. We crawled GitHub
projects meeting strict selection criteria: comprehensive
documentation (README, API docs), production-ready
quality (1000+ stars, active development), and clear fea-
ture specifications. We employed Claude-3.5-Sonnet (An-
thropic 2024) to extract functional requirements from repos-
itory documentation and expand requirements into struc-
tured feature specifications, ensuring consistent translation
of requirements into actionable development features with
clear evaluation criteria.

Task Structure and Formulation. As illustrated in Fig-
ure 2, each task in RealDevBench is structured as a triplet
to simulate realistic software development scenarios: (1) Re-
quirements Description: A brief textual summary outlining
the project’s purpose and setting; (2) Feature List: A de-
tailed and structured list of functional goals that define the
success criteria; (3) Supplementary Materials: Task-specific
resources such as images, audio, or datasets that introduce
real-world complexity.

To further enhance the realism of each task, we incor-
porated carefully curated materials from multiple sources:
(1) Images: Sourced from Unsplash 3 for thematic relevance
and professional quality; (2) Datasets: Selected from Kag-
gle * based on topic relevance and appropriate complex-
ity; (3) Documents: Manually created documents (resumes,
business proposals, catalogs) that mirror real-world usage
scenarios.

5 AppEvalPilot: Autonomous Evaluation

As discussed previously, the rise of Al-driven software de-
velopment demands scalable, automated, and adaptive eval-
uation methods. To achieve this, we introduce AppEvalPilot,
an Agent-as-a-Judge evaluation paradigm designed for au-
tomated end-to-end interaction-based software project test-
ing. Unlike static analysis or rigid test suites, AppEvalPilot
actively engages with software interfaces, executing real-
time user interactions to assess functional correctness and
adaptability. As illustrated in Figure 3, the evaluation frame-
work follows a three-stage pipeline: (1) generate test cases
based on requirements and domain knowledge; (2) simulate
real-world user interactions via textual and visual inputs;
(3) assess correctness and completeness by comparing ac-
tual outcomes with expected behaviors. This dynamic and

"https://www.upwork.com
Zhttps://www.freelancer.com
3https://unsplash.com/
*https://www.kaggle.com/
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Figure 3: Overall design of AppEvalPilot showing the auto-
mated testing workflow: test case generation from user re-
quirements, multimodal test execution through interface in-
teraction (scrolling, typing, clicking), and binary evaluation
of outcomes for objective software assessment.
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Figure 4: Evaluation pipeline of AppEvalPilot. The agent
performs test sequences on two different web implemen-
tations, systematically assesses functionality through direct
interaction, documents observable differences in form be-
havior, and generates quantitative scores based on test cases.

automated approach aligns with RealDevBench’s focus on
practical software evaluation, enabling scalable and rigorous
assessment of Al-generated systems.

Test Case Generation. AppEvalPilot starts by automat-
ing the creation of high-quality, contextually relevant test
cases that align with RealDevBench ’s open-ended and
multimodal requirements. To achieve this, it leverages few-
shot learning (Wang et al. 2020) to infer requirement-to-
test mappings from a small set of manually curated ex-
amples, allowing it to generalize efficiently across diverse
software requirements. Additionally, it integrates domain-
specific knowledge, such as game mechanics for Game
tasks, and security protocols for Data tasks, to ensure test
cases accurately reflect real-world scenarios and practical
constraints. To standardize generation, the agent uses a
structured prompt that simulates the behavior of a profes-
sional test engineer. The number of cases is capped (e.g.,
15-20) to ensure evaluation tractability.

Test Case Execution. AppEvalPilot next autonomously
executes the generated test cases by directly interacting with
software applications through their graphical user interfaces
(GUls), effectively simulating genuine user interactions. As
shown in Figure 3, the execution agent handles multiple in-
put types from active software, including textual data (XML)
from accessibility trees (al lytree) and visual data like icons
and screenshots, to accurately interpret the interface. This
facilitates a thorough understanding of the software’s Ul for

precise interaction. Specifically, the agent operates within a
structured action space consisting of four core commands,
serving as the foundational components for complex inter-
actions. The action space includes:

* Open (app): Launches the target application via shortcut
keys to enable quick context switching.

* Run (code): Uses PyAutoGUI to simulate mouse and
keyboard input for complex interaction sequences.

» Tell (answer): Outputs test results to support validation
and downstream metrics like AgentScore.

* Stop: Ends the current test episode, managing execution
boundaries.

These atomic actions, as shown in Figure 3, allow AppE-
valPilot to execute complex tasks such as form filling, web
navigation, and validation checks. During the execution of
each test case, AppEvalPilot systematically transforms it
into a structured, multi-step execution workflow, wherein
each step may encompass multiple actions amalgamated to
facilitate higher-level operations. To ensure efficiency and
flexibility, AppEvalPilot employs adaptive decision-making
through historical reasoning and model-based planning, fol-
lowing the Plan-Act framework (Wang et al. 2023) to con-
tinuously improve execution processes. This method allows
AppEvalPilot to enhance execution by refining subtasks,
minimizing redundant actions, and adapting strategies in re-
sponse to unexpected Ul conditions or errors, especially im-
portant for lengthy software testing tasks.

Test Result Evaluation. The Test Result Evaluation mod-
ule compares actual interaction outcomes against the ex-
pected success criteria defined in RealDevBench. The agent
autonomously executes interaction workflows across differ-
ent application implementations, adapting its actions based
on each interface while maintaining consistent testing objec-
tives. Specifically, after each test execution, AppEvalPilot
generates a structured report that documents both the per-
formed actions (e.g., entering user information, submitting
a form) and the resulting behaviors (e.g., form submission
success, data persistence). Based on observed outcomes,
AppEvalPilot classifies each test case into one of three cat-
egories: Pass (expected behavior is met), Fail (expected be-
havior is violated), or Uncertain (outcome is inconclusive or
partially observed). These classifications feed into an aggre-
gated score on test case or feature levels, offering a quantita-
tive assessment of the software quality. As illustrated in Fig-
ure 4, the agent runs similar interaction sequences across dif-
ferent implementations and determines test case satisfaction
by comparing observed execution results against specified
requirements. This autonomous execution approach enables
the agent to make informed judgments about requirement
satisfaction by directly observing how different implemen-
tations respond to similar user interactions. This process not
only surfaces hidden behavioral issues but also ensures that
the evaluation remains scalable, interpretable, and grounded
in observable user-level feedback.



6 Experiments

We conduct comprehensive experiments to validate AppE-
valPilot’s evaluation capabilities and its effectiveness in
benchmarking software development systems. Our experi-
mental design addresses two critical research questions: (1)
How effectively does AppEvalPilot evaluate software qual-
ity compared to existing evaluation approaches? and (2) Can
AppEvalPilot serve as a reliable automated judge for bench-
marking LLM-based software engineerinhg?

6.1 AppEvalPilot Capability Validation

Dataset. We construct our evaluation dataset by select-
ing 49 tasks (25%) from RealDevBench, ensuring cover-
age across all domains. We first fix the generated software
projects using Lovable (Team 2024a) and establish reliable
human ground truth labels through a rigorous two-level eval-
uation process: (1) Test case-level: For test cases c; gener-
ated by AppEvalPilot, we invite 3 QA specialists (1-3 years
experience) to execute each test case and evaluate Pass/-
Failed/Uncertain outcomes; (2) Feature-level: Each project
also receives independent scoring from 3 QA specialists who
manually test generated software projects against feature
lists, providing granular scores for each feature f; € {0,1}
(Failed/Pass), with final validation by a senior expert. There-
fore, each project quality is recorded as human_quality =
LS~ | fi where n represents the total number of features.

Baselines. We compare against state-of-the-art GUI sys-
tems: Claude-3.5-Sonnet-v2 (Anthropic 2024), UI-Tars (Qin
et al. 2025), WebVoyager-Agent (He et al. 2024) with
gwen2.5-vI-32B (Bai et al. 2025) and claude-3.5-sonnet-
v2 backbones, and Browser-Use with claude-3.7-sonnet-
v2 (Anthropic 2025). Framework protocols provide high-
level requirements for autonomous test strategy decomposi-
tion, while model protocols provide pre-generated test cases
aligned with their input paradigms.

Metrics. Given test case set C = {¢y,ca,...,cn } or fea-
ture list F' = { f1, f2, ..., far }, each item is classified as true,
false, or uncertain by human evaluators or agents. We define
binary scores as:

score; — 1 if class; = true
' |0 ifclass; € {false, uncertain}

We use accuracy to measure judgement correctness and
quality alignment using Pearson correlation at fest case-
level and feature-level, where test case-level represents av-
eraged performance across all test cases in each project, and
feature-level measures correlation between agent and human
feature scores across all software projects.

Results & Analysis. AppEvalPilot demonstrates superior
performance across all evaluation metrics. Our framework
achieves an accuracy of 0.92 in test case classification and
a quality alignment correlation of 0.81 with human evalu-
ators, representing a 47% improvement over WebVoyager
(Claude-3.5-Sonnet) which achieved 0.55 accuracy align-
ment. Compared to baseline GUI testing approaches like

Method Feature-level Test Case-level Efficiency
Quality Align. Quality Align. Acc. Time Cost
Human 0.74 - 0.65 - - - -
GUI Model
Claude-3.5-Sonnet 0.27 0.23 0.46 049 0.68 9.20 1.01
UI-Tars 049 029 063 059 075 865 0.17
GUI Agent Framework

WebVoyager (Qwen2.5)  0.29 0.25 0.35 044 0.6 2.16 0.04
WebVoyager (Claude) 0.64 043 0.6 0.55 0.74 1.60 0.10
Browser-Use (Claude) 0.67 058 063 0.61 0.76 13.50 1.13
AppEvalPilot(Claude) 0.73 085 074 081 092 9.0 0.26

Table 2: Performance comparison on RealDevBench bench-
mark. Human Quality (GT) represents ground truth project
quality scores from human evaluation. Quality Alignment
measures correlation with human assessments.

Browser-Use (Miiller and Zuni& 2024), AppEvalPilot re-
duces evaluation time by 33% (from 13.50 to 9.00 min-
utes per app) while achieving 77% cost reduction through
its interactive-driven paradigm. At the feature level, AppE-
valPilot maintains the highest alignment with human assess-
ments, achieving 0.85 correlation across diverse application
domains compared to Browser-Use’s 0.58, representing a
47% improvement and validating its effectiveness in end-to-
end automated evaluation. End-to-end automated software
testing presents significant challenges for existing GUI mod-
els and agents, requiring sophisticated planning capabilities
and execution accuracy, where traditional GUI tasks primar-
ily focus on fine-grained operational requirements similar
to individual test case granularity. When utilizing test cases
provided by AppEvalPilot, all baseline models showed an
average improvement of 0.17, demonstrating the value of
our test case generation approach. Our observations reveal
that detailed test cases not only improve GUI agent testing
success rates but also enhance testing robustness, since each
feature is decomposed into multiple supporting test cases
where incorrect judgment on one test case does not affect
the results of other test cases, thereby improving the robust-
ness and reliability of the overall testing process.

Comparative Evaluation Analysis. To comprehensively
validate AppEvalPilot’s evaluation effectiveness, we con-
duct systematic comparative analysis across multiple eval-
uation methodologies using the same 49 Lovable-generated
projects. Our comparison encompasses static evaluation
methods as illustrated in Figure 5: (1) Code Quality assess-
ment (Zheng et al. 2023a) employing integrated Claude-
3.5-Sonnet scoring of source files, and (2) Visual Qual-
ity evaluation utilizing Claude-3.5-Sonnet aesthetic scoring
with WebGen-Bench prompts (Lu et al. 2025). As demon-
strated in Figure 5, both Code Quality and Visual Quality
fail to effectively capture the nuances of software quality,
in contrast to Agent Quality, which shows a strong align-
ment with human assessments. Our analysis reveals critical
shortcomings in existing LLM-as-a-judge and MLLM-as-
a-judge approaches. First, static evaluation cannot capture



Human Quality vs Agent/Code/Visual Quality Comparison

Agent Quality —e— Code Quality —e— Visual Quality]

[—0— Human Quality

Figure 5: Comparative analysis of evaluation methods ver-
sus human quality. (Left) AppEvalPilot’s autonomous eval-
uation, (Middle) Static LLM code scoring, (Right) Visual
aesthetic scoring. Each point represents one project, with ra-
dial distance indicating quality scores (0-1 scale).

dynamic interaction issues that define software quality—the
deviation means for Code Quality and Visual Quality are
2.79% and 3.34x higher than AppEvalPilot’s Agent Quality,
respectively, demonstrating substantial gaps between static
assessment and actual user experience. Second, evaluation
distributions exhibit pronounced misalignment with human
judgment: AppEvalPilot achieves a distribution overlap rate
of 0.96 with human scores, while Code Quality and Vi-
sual Quality achieve mere 0.75 and 0.55 overlap rates, indi-
cating fundamental divergence from natural evaluation pat-
terns. These findings underscore the superiority of our agent-
based evaluation framework in capturing multifaceted soft-
ware quality aspects that traditional static methods system-
atically overlook. AppEvalPilot’s dynamic interaction ca-
pabilities enable accurate quality assessment that closely
mirrors human evaluation standards while providing action-
able feedback for developers, demonstrating clear advan-
tages over existing static evaluation paradigms.

6.2 Performance of LLMs on RealDevBench

Experimental Setting. Considering validation costs, we
conduct experiments on 54 tasks from RealDevBench-test.
The evaluated generation frameworks include MGX (Team
2024b), MGX (BoN-3), Bolt (StackBlitz 2024), Lovable,
OpenHands (Wang et al. 2025), Claude-3.5-Sonnet, Gemini-
2.5-Pro (Comanici et al. 2025), Kimi-K2 (Team et al.
2025), DeepSeek-V3 (DeepSeek-Al 2024), Qwen3-Coder-
480B (Team 2025), and Qwen3-235B-Instruct. After code
generation, we execute deployment through automated
scripts and LLM-generated deployment commands. For
MGX, Bolt, and Lovable, we directly utilize their pre-
deployed project URLSs for testing. We employ three eval-
uation approaches: AppEvalPilot’s interactive assessment,
static code quality evaluation, and visual aesthetic scoring
through screenshot analysis.

Performance Analysis. RealDevBench presents signifi-
cant challenges for LLMs, with even state-of-the-art mod-
els like Kimi-K2 achieving only 0.39 in software quality
for generated projects. Current LLM performance on Re-
alDevBench is substantially lower than their performance
on traditional coding benchmarks, revealing significant de-
fects and bugs in complete interactive functionality develop-
ment and validation. Visual and static code assessment alone

System Agent Quality Code Quality Visual Quality
Large Language Models
Claude-3.7-Sonnet 0.31 0.41 0.18
Gemini-2.5-Pro 0.29 0.45 0.26
Kimi-K2 0.39 0.41 0.29
DeepSeek-V3 0.29 0.18 0.21
Qwen3-Coder-480B 0.53 0.41 0.32
Qwen3-235B-Instruct 0.33 0.42 0.20
Agent Systems
OpenHands 0.50 0.38 0.33
Lovable 0.74 0.58 0.47
Bolt 0.54 0.69 0.50
MGX 0.60 0.68 0.41
MGX (BoN-3) 0.78 0.72 0.41

Table 3: Comparative evaluation results across different
code generation systems and evaluation methods.

cannot adequately quantify these limitations and shortcom-
ings. For agent frameworks, generation quality shows signif-
icantly higher average scores in Agent Quality, with an im-
provement of approximately 0.27 compared to direct LLM
generation. This improvement stems from two key factors:
First, these frameworks adopt standard software engineer-
ing development processes through design, development,
and basic deployment verification, significantly enhancing
code usability. Second, for complex interactive functional-
ity design, agent-generated projects contain multiple files
and components, providing more complete functional im-
plementation compared to single-script solutions produced
by LLMs.

As shown in Table 3, static assessment methods fail to
capture runtime behaviors, user interaction flows, and inte-
gration issues that are critical for real-world software func-
tionality. This validates AppEvalPilot’s interactive evalua-
tion paradigm as essential for comprehensive software qual-
ity assessment.

7 Conclusion

In this paper, we introduce RealDevWorld, a novel frame-
work for evaluating Al systems that generate code reposi-
tories from scratch. It comprises RealDevBench, an open-
ended and scalable dataset of 194 diverse tasks with multi-
modal elements, and AppEvalPilot, a GUI-based Agent-as-
a-Judge evaluation paradigm. AppEvalPilot performs auto-
mated, end-to-end validation of software functionality, in-
cluding dynamic behaviors and interaction logic, while pro-
viding fine-grained, task-specific diagnostic feedback.

Extensive experiments show that our framework closely
aligns with expert human judgments while significantly re-
ducing evaluation time and cost. On the RealDevBench
benchmark, AppEvalPilot substantially outperforms exist-
ing GUI frameworks, achieving an accuracy of up to 87%.
Overall, RealDevWorld offers a scalable and automated so-
lution for reliable software evaluation, paving the way for
future advancements in production-ready code generation.
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